NASA Contractor Report 181976 ICASE Report No. 90-2

ICASE

UPPER SEMICONTINUOUS GLOBAL ATTRACTORS FOR VISCOUS FLOW

Yuh-Roung Ou S. S. Sritharan

Contract No. NAS1-18605 January 1990

Institute for Computer Applications in Science and Engineering NASA Langley Research Center Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

		Terms magin			
		•			
				·- ··	. 3 .
	17/V -1		·····	 , second	75.
. 253	· · · · · · · · · · · · · · · · · · ·				~
·					
	a damen ee	· <u></u>			. di <u>s</u>
	and a description of the second				_
			-		=
· 14 distance nature records - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	, ,				

UPPER SEMICONTINUOUS GLOBAL ATTRACTORS FOR VISCOUS FLOW

Yuh-Roung Ou¹
Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23665.

and

S. S. Sritharan²
Department of Aerospace Engineering
University of Southern California
Los Angeles, CA 90089-1191

ABSTRACT

A particular form of regularization of the Navier-Stokes equations is studied. It has been shown that as the regularization parameter goes to zero, the global attractor for the regularized system converges to the global attractor for the conventional Navier-Stokes system.

¹This research was supported by National Aeronautics and Space Administration under NASA Contract No. NAS1-18605 and the Air Force Office of Scientific Research under AFOSR Grant No. 89-0079 while the author was in residence at the Institute for Computer Application in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

²This research was supported by the Office of Naval Research under the URI Research Contract No. N00014-86-K-0679.

		•
		-
		_
		_
		==
		=
		•
		_
		- •-
		WART TO SERVICE STATE OF THE S
		
		=
		-
		===
		를 기계
		_
		-
transcription of the second se	 	
		======================================
		-
		= -
		
		
		=
		-
		=
		=-
		=
	en e	=
	en e	=
		=
	en e	=
	W W . L	

1 Introduction

Two of the profound open problems in the theory of three dimensional viscous flow are the unique solvability theorem for all time and the existence theorem for the global attractor. We have shown in our earlier studies [10, 9, 11, 13] that certain regularizations of the Navier-Stokes equations are uniquely solvable (up to dimension six) and can be characterized by compact global attractors. A natural question then is to investigate the possibility of establishing such results for the conventional Navier-Stokes equations by a limit process. In this paper we will accomplish this for the two dimensional case. We prove in particular that the compact global attractor Λ_{ϵ} for the regularized system converges to the compact global attractor Λ of the conventional system as $\epsilon \to 0$.

The outline of the paper is as follows. In §2 we present the relevant mathematical framework for the paper. In §3 we establish several uniform estimates for the generalized solutions of the regularized system. These estimates hold independent of the size of the regularization parameter and remain valid when this parameter goes to zero. In §4 we show that the solution of the regularized system converges to the solution of the conventional system as the regularization parameter goes to zero. The next two sections deal with convergence of attractors. In §5 we establish the convergence of the simple case of time periodic solutions. Then in §6 we prove the central result of this paper establishing the upper semicontinuity of the compact global attractor Λ_{ϵ} at $\epsilon = 0$.

The question of the convergence of Λ_{ϵ} to Λ is thus completely answered for the two dimensional case. Our future investigations will be concerned with the corresponding problem for the three dimensional case. We have already reported partial results in this direction in [10, 9] where it was shown that the generalized solutions of the three dimensional regularized system converges to the solution of the conventional system under certain conditions. The methods validated in this paper certainly give us guidelines to elaborate the three dimensional case. We remark here that the use of the artificial viscosity method to establish solvability has also been successful in other branches of partial differential equations. A well

known example of such a result is the viscosity solution method for the Hamilton-Jacobi equations [2].

2 Notations and Preliminaries

We regularize the Navier-Stokes system by adding a fourth order artificial viscosity term (Laplacian square) to the conventional system. In this paper we will restrict ourselves to periodic boundary conditions. A thorough study of the regularized system with this and other types of boundary conditions was carried out in [10, 9, 11].

Let us consider the velocity field $u = (u_1, u_2)$ and pressure field p with space periodic condition in R^2 such that for $\Omega = (0, L) \times (0, L)$, we have

$$\frac{\partial u}{\partial t} + \epsilon \Delta^2 u - \nu \Delta u + (u \cdot \nabla) u + \nabla p = f, \quad \text{in} \quad \Omega \times (0, \infty), \quad (1)$$

$$\nabla \cdot \boldsymbol{u} = 0, \qquad \qquad \text{in} \quad \Omega \times (0, \infty), \qquad (2)$$

$$u(x + Le_i, t) = u(x, t)$$
 $i = 1, 2,$ $\forall t \in (0, \infty),$ (3)

$$p(x + Le_i, t) = p(x, t) \qquad i = 1, 2, \qquad \forall \quad t \in (0, \infty), \tag{4}$$

$$u(x,0) = u_0(x),$$
 in Ω . (5)

Here $\nu > 0$ is the coefficient of the kinematic viscosity of the fluid and $\epsilon > 0$ is the artificial dissipation parameter. f and u_0 are prescribed vectorfields. Notice that the conventional Navier-Stokes equations correspond to the value of the regularized parameter $\epsilon = 0$.

We denote by $H^m(\Omega)$, the Sobolev space of L-periodic generalized functions (condition (3)) which have up to order m square integrable distributional derivatives. These spaces are endowed with the inner product

$$(u,v)_m = \sum_{|\alpha| \leq m} (D^{\alpha} u, D^{\alpha} v)_{L^2(\Omega)}$$

and the norm

$$\|u\|_m = (\sum_{|\alpha| \le m} \|D^{\alpha} u\|_{L^2(\Omega)}^2)^{1/2}.$$

Suppose we expand $u \in H^m(\Omega)$ by the Fourier series

$$u(x) = \sum_{k \in Z^2} c_k e^{2i\pi k \cdot x/L},$$

then the Sobolev space $u\in H^m(\Omega)$ can be characterized by

$$H^m(\Omega) = \{u \mid \bar{c}_k = c_{-k}, \sum_{k \in \mathbb{Z}^2} |k|^{2m} |c_k|^2 < \infty\}.$$

We denote by $\dot{H}^m(\Omega)$ the subspace of $H^m(\Omega)$ with zero average:

$$\dot{H}^{m}(\Omega) = \{ \boldsymbol{u} \in H^{m}(\Omega) ; \int_{\Omega} \boldsymbol{u}(\boldsymbol{x}) d\boldsymbol{x} = 0 \}.$$

For m = 0, we have $\dot{H}^0(\Omega) = \dot{L}^2(\Omega)$.

We introduce the following solenoidal subspaces which are important to our analysis:

$$H=\{\boldsymbol{u}\in\dot{L}^2(\Omega),\;\mathrm{div}\boldsymbol{u}=0,\;\boldsymbol{u}\cdot\boldsymbol{n}|_{\Gamma_i}=-\boldsymbol{u}\cdot\boldsymbol{n}|_{\Gamma_{i+2}},\;i=1,2\};$$

$$\hat{V} = \{ u \in \dot{H}^1(\Omega), \ \mathrm{div} u = 0, \ \gamma_0 u |_{\Gamma_i} = \gamma_0 u |_{\Gamma_{i+2}}, \ i = 1, 2 \}.$$

$$V = \{ \boldsymbol{u} \in \dot{H}^{2}(\Omega), \text{ div } \boldsymbol{u} = 0, \ \gamma_{0}\boldsymbol{u}|_{\Gamma_{i}} = \gamma_{0}\boldsymbol{u}|_{\Gamma_{i+2}}, \gamma_{1}\boldsymbol{u}|_{\Gamma_{i}} = -\gamma_{1}\boldsymbol{u}|_{\Gamma_{i+2}}, \ i = 1, 2 \}.$$

Here the faces of Ω are numbered as

$$\Gamma_i = \partial \Omega \cap \{x_i = 0\} \quad ext{and} \quad \Gamma_{i+2} = \partial \Omega \cap \{x_i = L\}, \ i = 1, 2.$$

Here γ_0, γ_1 are the trace operators and n is the unit outward normal on $\partial\Omega$.

The space H is endowed with the inner product $(u,v)_{L^2(\Omega)}$ and norm $|u| = (u,u)_{L^2(\Omega)}^{1/2}$ (or $\|\cdot\|_0$). It can be shown that the norm induced by $\dot{H}^1(\Omega)$ and the norm $\|\nabla u\|_{L^2(\Omega)}$ are equivalent in \hat{V} . Similarly, in V the norm induced by $\dot{H}^2(\Omega)$ is equivalent to the norm $\|\Delta u\|_{L^2(\Omega)}$. We then denote $\|u\| = \|\Delta u\|_{L^2(\Omega)} = (u,u)_V^{1/2}$ as norm in V derived from the inner product

$$(\boldsymbol{u},\boldsymbol{v})_V=(\Delta\boldsymbol{u},\Delta\boldsymbol{v}).$$

Let \hat{V}' , V' denote the dual spaces of \hat{V} and V respectively.

The Stokes operator A_1 can be characterized explicitly using Fourier series. We write the Stokes problem,

$$\begin{cases} -\Delta \boldsymbol{u} + \nabla q = \boldsymbol{g}, & \text{in } \Omega, \\ \nabla \cdot \boldsymbol{u} = 0, & \text{in } \Omega. \end{cases}$$

as

$$A_1 \mathbf{u} = \mathbf{g}$$
, with $D(A_1) = \{ \mathbf{u} \in H, A_1 \mathbf{u} \in H \}$.

We have in fact,

$$\boldsymbol{u} \in D(A_1) = \dot{H}^2(\Omega) \cap H = V. \tag{6}$$

Similarly, we can solve by Fourier series the following linear problem which is fundamental to our analysis:

$$\begin{cases} \Delta^{2} \boldsymbol{v} + \nabla p = \boldsymbol{f}, & \text{in } \Omega, \\ \nabla \cdot \boldsymbol{v} = 0, & \text{in } \Omega. \end{cases}$$
 (7)

The linear operator A (which we call the dissipation operator) is characterized by Av = f. It can be shown that the self adjoint operator $A \in \mathcal{L}(D(A); H) \cap \mathcal{L}(V; V')$ is closed with D(A) dense in $V \subset H$. Moreover, we can define positive as well as negative powers $A^{\alpha}, \alpha \in R$ with domain $D(A^{\alpha})$. Let us denote by X_{α} the space,

$$X_{\alpha} = D(A^{\alpha/4}) = \{ u \in \dot{H}^{\alpha}(\Omega), \operatorname{div} u = 0 \}.$$

In fact the norm induced by $\dot{H}^{\alpha}(\Omega)$ is equivalent to the norm $|A^{\alpha/4}u|$ in X_{α} . This means

$$\beta_1 \|\mathbf{u}\|_{4\alpha} \le |A^{\alpha}\mathbf{u}| \le \beta_2 \|\mathbf{u}\|_{4\alpha}, \quad \forall \ \mathbf{u} \in D(A^{\alpha}), \quad \forall \ \alpha \in \mathbf{R}.$$
 (8)

We can deduce from a theorem due to Lions [7] that $D(A^{1/2}) = V$. Thus,

$$D(A_1) = V = D(A^{1/2}). (9)$$

By Rellich's Lemma [1] A^{-1} as a mapping in H is compact. Hence the spectrum of operator A is discrete with finite multiplicities and can be written explicitly using Fourier series as

$$\lambda_k = \frac{16\pi^4}{L^4} |k|^4, \qquad k = (k_1, k_2).$$

The self adjoint operator A possesses an orthonormal set of eigenfunctions $\{w_j\}_{j=1}^{\infty}$ complete in H,

$$Aw_j = \lambda_j w_j$$
, $w_j \in D(A)$, $\forall j$.

The above results can be applied to the Stokes operator A_1 as well. The eigenvalues of A_1 are

$$\mu_k = \frac{4\pi^2}{L^2} |k|^2, \qquad k = (k_1, k_2).$$

The corresponding orthonormal set of eigenfunctions $\{\hat{w}_j\}_{j=1}^{\infty}$ is complete in H and

$$A_1\hat{\boldsymbol{w}}_j = \lambda_j\hat{\boldsymbol{w}}_j, \qquad \hat{\boldsymbol{w}}_j \in D(A_1), \ \forall j.$$

Remark: For the space periodic case considered in this paper, the Stokes operator A_1 is in fact equal to $A^{1/2}$. However since for other types of boundary conditions they are different we prefer to give them distinct notations.

Let us now define the trilinear form $b(\cdot,\cdot,\cdot)$ associated with the inertia terms:

$$b(\mathbf{u}, \mathbf{v}, \mathbf{w}) = \sum_{i, i=1}^{2} \int_{\Omega} \mathbf{u}_{i} D_{i} \mathbf{v}_{j} \mathbf{w}_{j} d\mathbf{x}, \quad D_{i} = \frac{\partial}{\partial x_{i}}.$$

It can be easily shown that

$$b(u, v, w) = -b(u, w, v), \quad \forall u, v, w \in V$$

and

$$b(u, v, v) = 0, \quad \forall u, v \in V.$$

In the case of periodic boundary conditions, we have in addition [15, Lemma 3.1]

$$b(\boldsymbol{u},\boldsymbol{u},A_1\boldsymbol{u})=0, \quad \forall \, \boldsymbol{u} \in D(A_1). \tag{10}$$

Using the discrete Hölder inequality and Sobolev embedding theorem we can show that $b(\cdot,\cdot,\cdot)$ is trilinear continuous on $\dot{H}^{m_1}(\Omega) \times \dot{H}^{m_2+1}(\Omega) \times \dot{H}^{m_3}(\Omega)$, $m_i \geq 0$ [15]:

$$|b(u,v,w)| \leq c_0 ||u||_{m_1} ||v||_{m_2+1} ||w||_{m_3},$$

$$m_1 + m_2 + m_3 > 1$$
.

The following well known estimate will be used later,

$$|b(u, v, w)| \le c_1 |u|^{1/2} |\nabla u|^{1/2} |v|^{1/2} |\nabla v|^{1/2} |\nabla w|, \quad \forall u, v, w \in V(\text{ or } \hat{V}),$$
(11)

where c_1 is a positive constant.

The continuity property of the trilinear form enables us to define (using Riesz representation theorem) a bilinear continuous operator B from $\dot{H}^{m_1}(\Omega) \times \dot{H}^{m_2+1}(\Omega)$ into $(\dot{H}^{m_3}(\Omega))'$. In particular, for $u, v, w \in V$, $B(u, v) \in V'$ will be defined by

$$< B(u, v), w>_{V'\times V} = b(u, v, w), \quad \forall w \in V.$$

Similarly, we define $\hat{B}(u,v) \in \hat{V}'$ by

$$<\hat{B}(\boldsymbol{u},\boldsymbol{v}),\boldsymbol{w}>_{\hat{V}'\times\hat{V}}=b(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}), \quad \forall \boldsymbol{w}\in\hat{V}.$$

Using the operators defined above we can write the regularized system (1)-(5) in the evolution form:

$$\begin{cases}
\frac{d\mathbf{u}_{\epsilon}}{dt} + \epsilon A \mathbf{u}_{\epsilon} + \nu A_{1} \mathbf{u}_{\epsilon} + B(\mathbf{u}_{\epsilon}, \mathbf{u}_{\epsilon}) = \mathbf{f}, & t > 0, \\
\mathbf{u}_{\epsilon}(0) = \mathbf{u}_{\epsilon 0}.
\end{cases} (12)$$

The existence and uniqueness theorems for initial value problem (12) can be found in [10, 9]. The main result in this work is:

Theorem 2.1

- (i) Let $f \in L^2(0,T;V')$ and $u_0 \in H$ be given. Then there exists a unique weak solution of (12) which satisfies $u_{\epsilon} \in C([0,T];H) \cap L^2(0,T;V), \forall T > 0$.
- (ii) Let $f \in L^2(0,T;H)$ and $u_0 \in V$ be given. Then there exists a unique strong solution of (12) which satisfies $u_{\epsilon} \in C([0,T];V) \cap L^2(0,T;D(A)), \forall T>0$.

Ξ

Let us denote by $W_{\epsilon}(t)$ the nonlinear semigroup associated with the solution of the regularized system (12). This means $W_{\epsilon}(t,0;u_{\epsilon 0})=u_{\epsilon}(t)$ for all $t\geq 0$.

Notice that the conventional Navier-Stokes system can be written in the evolution form:

$$\begin{cases}
\frac{d\mathbf{u}}{dt} + \nu A_1 \mathbf{u} + \hat{B}(\mathbf{u}, \mathbf{u}) = \mathbf{f}, & t > 0, \\
\mathbf{u}(0) = \mathbf{u}_0.
\end{cases} \tag{13}$$

The following unique solvability theorem for the system (13) is well known.

Theorem 2.2

(i) Let $f \in L^2(0,T;\hat{V}')$ and $u_0 \in H$ be given. Then there exists a unique weak solution of (13) which satisfies $u \in C([0,T];H) \cap L^2(0,T;\hat{V})$, $\forall T > 0$ (Lions and Prodi [8]).

(ii) Let $f \in L^2(0,T;H)$ and $u_0 \in \hat{V}$ be given. Then there exists a unique strong solution of (13) which satisfies $\mathbf{u} \in C([0,T];\hat{V}) \cap L^2(0,T;D(A_1))$, $\forall T > 0$ (Kiselev and Ladyzhenskaya [5]).

We will denote by $W(t): u_0 \to u(t)$ the nonlinear semigroup associated with the solution of Navier-Stokes equations.

Let us introduce the following result [10, 9] which is needed for the convergence of u_{ϵ} as the regularized parameter $\epsilon \to 0$.

Proposition 2.1 Let $\{u_k\}$ be a sequence of vectorfields that converge weakly in $L^2(0,T;\hat{V})$, weak-Star in $L^{\infty}(0,T;H)$ and strongly in $L^2(0,T;H)$. Then, the following limits are obtained for any vector function w in $\mathcal{Y} = \{w \in C(0,T;\hat{V}); w' \in L^2(0,T;H)\}$

(a)
$$\lim_{k\to\infty}\int_0^T(u_k(t),w'(t))dt=\int_0^T(u(t),w'(t))dt,$$

(b)
$$\lim_{k\to\infty}\int_0^T (\nabla u_k(t), \nabla w(t))dt = \int_0^T (\nabla u(t), \nabla w(t))dt,$$

(c)
$$\lim_{k\to\infty}\int_0^T b(\boldsymbol{u}_k(t),\boldsymbol{u}_k(t),\boldsymbol{w}(t))dt = \int_0^T b(\boldsymbol{u}(t),\boldsymbol{u}(t),\boldsymbol{w}(t))dt.$$

3 Uniform Estimates for the Solutions

In this section we will establish various estimates uniform in ϵ for the solution of regularized Navier-Stokes equations. These bounds will be used to establish the limit of these solutions to the conventional Navier-Stokes equations.

Lemma 3.1 Let $f \in L^2(0,T;H)$, then the weak solution $u_{\epsilon}(t)$ of the regularized Navier-Stokes equations satisfy

$$egin{aligned} &(\mathrm{i}) \sup_{t \in [0,T]} |u_{\epsilon}(t)|^2 \leq d_1, \ &(\mathrm{ii}) \int_0^T |
abla u_{\epsilon}(t)|^2 dt \leq d_2, \end{aligned}$$

where d_1, d_2 are both independent of ϵ .

Proof: By taking the inner product of (12) with $u_{\epsilon}(t)$, we obtain the energy equality:

$$\frac{d}{dt}|\mathbf{u}_{\epsilon}|^{2} + 2\epsilon||\mathbf{u}_{\epsilon}||^{2} + 2\nu|\nabla\mathbf{u}_{\epsilon}|^{2} = 2(\mathbf{f}, \mathbf{u}_{\epsilon}).$$

Here we have used the fact that $b(u_{\epsilon}, u_{\epsilon}, u_{\epsilon}) = 0$. By applying Young's inequality and the Poincaré Lemma $|\nabla u_{\epsilon}|^2 \ge \mu_1 |u_{\epsilon}|^2$, we get

$$\frac{d}{dt}|\boldsymbol{u}_{\epsilon}|^{2}+2\epsilon\|\boldsymbol{u}_{\epsilon}\|^{2}+\nu|\nabla\boldsymbol{u}_{\epsilon}|^{2}\leq\frac{|f|^{2}}{\nu\mu_{1}},$$
(14)

where $\mu_1 = 4\pi^2/L^2$ is the smallest eigenvalue of the Stokes operator A_1 . If we drop the positive term associated with ϵ , we obtain

$$\frac{d}{dt}|\boldsymbol{u}_{\epsilon}|^2 + \nu \mu_1 |\boldsymbol{u}_{\epsilon}|^2 \leq \frac{|f|^2}{\nu \mu_1}.$$

Hence, by integrating the above inequality from 0 to t, we get

$$|u_{\epsilon}(t)|^2 \leq |u_{\epsilon 0}|^2 e^{-\alpha t} + \frac{1}{\alpha} \int_0^t |f(s)|^2 e^{-\alpha(t-s)} ds,$$

with $\alpha = \nu \mu_1$. That is,

$$\sup_{t\in[0,T]}|u_{\epsilon}(t)|^2\leq d_1.$$

with
$$d_1 = d_1(\boldsymbol{u}_{\epsilon 0}, \boldsymbol{f}, \alpha, T) = |\boldsymbol{u}_{\epsilon 0}|^2 + \frac{1}{\alpha} \int_0^T |\boldsymbol{f}(s)|^2 ds.$$

If we drop the term $2\epsilon \|u_{\epsilon}\|^2$ in (14) and integrate from 0 to T,

$$|\boldsymbol{u}_{\epsilon}(T)|^{2} + \nu \int_{0}^{T} |\nabla \boldsymbol{u}_{\epsilon}|^{2} dt \leq |\boldsymbol{u}_{\epsilon 0}|^{2} + \frac{1}{\alpha} \int_{0}^{T} |\boldsymbol{f}|^{2} dt. \tag{15}$$

This implies

$$\int_0^T |\nabla u_{\epsilon}|^2 dt \leq \frac{1}{\nu} [|u_{\epsilon 0}|^2 + \frac{1}{\alpha} \int_0^T |f|^2 dt].$$

That is

$$\int_0^T |\nabla u_{\epsilon}(t)|^2 dt \le d_2, \qquad d_2 = \frac{d_1}{\nu}.$$

Notice that d_1 and d_2 do not depend on ϵ .

Corollary 3.1 Let $f \in H$ be independent of time then,

$$(\mathrm{i})|\boldsymbol{u}_{\epsilon}(t)|^{2} \leq |\boldsymbol{u}_{\epsilon}(0)|^{2}e^{-\alpha t} + \rho_{0}^{2}(1 - e^{-\alpha t}), \quad \rho_{0} = \frac{|\boldsymbol{f}|}{\alpha}, \ \forall \ t > 0,$$

$$(\mathrm{ii})\int_{0}^{T} |\nabla \boldsymbol{u}_{\epsilon}|^{2}dt \leq \frac{1}{\nu}(\ |\boldsymbol{u}_{\epsilon 0}|^{2} + \frac{|\boldsymbol{f}|^{2}T}{\alpha}), \ T > 0.$$

Proof: By integrating (14) from 0 to t with $f \in H$, we obtain result (i) with $\rho_0 = |f|/\alpha$. Result (ii) is a direct consequence of (15).

Lemma 3.2 Let $f \in L^2(0,T;H)$, then the strong solution $u_{\epsilon}(t)$ of the regularized Navier-Stokes equations satisfy

(i)
$$\sup_{t\in[0,T]} |\nabla u_{\epsilon}(t)|^2 \leq d_3,$$

 $(ii)\int_0^T |A_1 u_{\epsilon}(t)|^2 dt \leq d_4,$

where d_3, d_4 are both independent of ϵ .

Proof: We consider the strong solutions and take the inner product of (12) with A_1u_{ϵ} obtaining

$$\frac{d}{dt}|\nabla u_{\epsilon}|^{2}+2\epsilon|A^{3/4}u_{\epsilon}|^{2}+2\nu|A_{1}u_{\epsilon}|^{2}=2(f,A_{1}u_{\epsilon}).$$

Here we have used the fact that $b(u_{\epsilon}, u_{\epsilon}, A_1 u_{\epsilon}) = 0$ and

$$(A u_{\epsilon}, A_1 u_{\epsilon}) = (A^{1/4} A^{3/4} u_{\epsilon}, A^{1/2} u_{\epsilon})$$

= $(A^{3/4} u_{\epsilon}, A^{3/4} u_{\epsilon})$
= $|A^{3/4} u_{\epsilon}|^2$

since $D(A_1) = D(A^{1/2})$ and both A, A_1 are self adjoint. By applying Young's inequality, we get

$$\frac{d}{dt}|\nabla u_{\epsilon}|^2 + 2\epsilon |A^{3/4}u_{\epsilon}|^2 + \nu|A_1u_{\epsilon}|^2 \le \frac{|f|^2}{\nu}.$$
 (16)

We can drop the positive term $2\epsilon |A^{3/4}u_{\epsilon}|^2$ and use the inequality $|A_1u_{\epsilon}|^2 \ge \mu_1 |\nabla u_{\epsilon}|^2$ to get

$$\frac{d}{dt}|\nabla u_{\epsilon}|^{2} + \nu \mu_{1}|\nabla u_{\epsilon}|^{2} \leq \frac{|f|^{2}}{\nu}.$$
(17)

Integrating the above inequality from 0 to t, we get

$$|\nabla u_{\epsilon}(t)|^2 \leq |\nabla u_{\epsilon 0}|^2 e^{-\alpha t} + \frac{1}{\nu} \int_0^t |f(s)|^2 e^{-\alpha (t-s)} ds,$$

where $\alpha = \nu \mu_1$. This gives

$$\sup_{t\in[0,T]}|\nabla u_{\epsilon}(t)|^2\leq d_3.$$

with
$$d_3 = d_3(\boldsymbol{u}_{\epsilon 0}, \boldsymbol{f}, \nu, T) = |\nabla \boldsymbol{u}_{\epsilon 0}|^2 + \frac{1}{\nu} \int_0^T |f(s)|^2 ds$$
.

We can drop the term $2\epsilon |A^{3/4}u_{\epsilon}|^2$ in (16) and integrate from 0 to T to get

$$|\nabla \boldsymbol{u}_{\epsilon}(T)|^{2} + \nu \int_{0}^{T} |A_{1}\boldsymbol{u}_{\epsilon}|^{2} dt \leq |\nabla \boldsymbol{u}_{\epsilon 0}|^{2} + \frac{1}{\nu} \int_{0}^{T} |f|^{2} dt.$$
 (18)

This implies

$$\int_0^T |A_1 \boldsymbol{u}_{\epsilon}|^2 dt \leq \frac{1}{\nu} [|\nabla \boldsymbol{u}_{\epsilon 0}|^2 + \frac{1}{\nu} \int_0^T |f|^2 dt].$$

That is

$$\int_0^T |A_1 \boldsymbol{u}_{\epsilon}(t)|^2 dt \leq d_4, \qquad d_4 = \frac{d_3}{\nu}.$$

Notice that d_3 and d_4 do not depend on ϵ .

From this proof we can easily deduce the following results.

Corollary 3.2 Let $f \in H$ be independent of time then the strong solution $u_{\epsilon}(t)$ satisfies:

(i)
$$|\nabla u_{\epsilon}(t)|^{2} \leq |\nabla u_{\epsilon}(0)|^{2}e^{-\alpha t} + \rho_{1}^{2}(1 - e^{-\alpha t}), \quad \rho_{1}^{2} = \frac{|f|^{2}}{\nu \alpha}, \ \forall \ t > 0,$$

(ii) $\int_{0}^{T} |A_{1}u_{\epsilon}|^{2} dt \leq \frac{1}{\nu} (|\nabla u_{\epsilon 0}|^{2} + \frac{|f|^{2}T}{\nu}), \ T > 0.$

4 Limit to the Navier-Stokes Equations

In this section we will establish the convergence of the strong solution of the regularized Navier-Stokes equations as $\epsilon \to 0$. In [10, 9], a similar convergence result for the weak solution was established under certain conditions. In this section we will prove the convergence without any assumption on the bound for the solutions.

Theorem 4.1 Let $u_{\epsilon}(t)$ be the strong solution given by Theorem 2.1. Then as $\epsilon \to 0$, the solution u_{ϵ} converges to a unique limit which is the strong solution of the Navier-Stokes equations.

Proof: We need three forms of convergence for appropriate subsequences. Namely,

(i)
$$u_{\epsilon_{h'}} \longrightarrow u$$
 in $L^2(0,T;\hat{V})$ weakly;
(ii) $u_{\epsilon_{h'}} \longrightarrow u$ in $L^{\infty}(0,T;H)$ weak-star; (19)
(iii) $u_{\epsilon_{h'}} \longrightarrow u$ in $L^2(0,T;H)$ strongly,

as $\epsilon_{k'} \to 0$.

It follows from Lemma 3.2 that $u_{\epsilon_k} \in L^2(0,T;D(A_1)) \cap L^{\infty}(0,T;\hat{V})$ with bounds independent of ϵ_k . This easily implies (i) and (ii). (In fact, better convergence results are obtained.) The strong convergence result (iii) can be established as follows:

Let $\{u_{\epsilon_k}\}$ and $\{u_{\epsilon_l}\}$ be two sequences of strong solutions of (12) corresponding to the same initial data with $\epsilon_k = \frac{1}{k}$ and $\epsilon_l = \frac{1}{l}$, respectively. (i.e. $\epsilon_k, \epsilon_l \to 0$ as $k, l \to \infty$.) We denote by $u_{\epsilon}(t) = u_{\epsilon_k}(t) - u_{\epsilon_l}(t)$ so that $u_{\epsilon}(0) = 0$. By subtracting the equation (12) for u_{ϵ_l} from that for u_{ϵ_k} , we get

$$\mathbf{u}_{\epsilon}' + \epsilon_{k} A \mathbf{u}_{\epsilon_{k}} - \epsilon_{l} A \mathbf{u}_{\epsilon_{l}} + \nu A_{1} \mathbf{u}_{\epsilon} + B(\mathbf{u}_{\epsilon_{k}}, \mathbf{u}_{\epsilon_{k}}) - B(\mathbf{u}_{\epsilon_{l}}, \mathbf{u}_{\epsilon_{l}}) = 0$$
(20)

Taking the inner product of (20) with u_{ϵ} , we get

$$(\boldsymbol{u}_{\epsilon}',\boldsymbol{u}_{\epsilon}) + \epsilon_{k}(A\boldsymbol{u}_{\epsilon_{k}},\boldsymbol{u}_{\epsilon}) - \epsilon_{l}(A\boldsymbol{u}_{\epsilon_{l}},\boldsymbol{u}_{\epsilon}) + \nu(A_{1}\boldsymbol{u}_{\epsilon},\boldsymbol{u}_{\epsilon}) + b(\boldsymbol{u}_{\epsilon_{k}},\boldsymbol{u}_{\epsilon_{k}},\boldsymbol{u}_{\epsilon}) - b(\boldsymbol{u}_{\epsilon_{l}},\boldsymbol{u}_{\epsilon_{l}},\boldsymbol{u}_{\epsilon}) = 0.$$

By using the fact that $(Au, v) = (A_1u, A_1v)$ and the properties of the trilinear form b established earlier, we obtain

$$\frac{1}{2}\frac{d}{dt}|\boldsymbol{u}_{\epsilon}|^{2} + \epsilon_{k}(A_{1}\boldsymbol{u}_{\epsilon_{k}}, A_{1}\boldsymbol{u}_{\epsilon}) - \epsilon_{l}(A_{1}\boldsymbol{u}_{\epsilon_{l}}, A_{1}\boldsymbol{u}_{\epsilon}) + \nu|\nabla\boldsymbol{u}_{\epsilon}|^{2} - b(\boldsymbol{u}_{\epsilon}, \boldsymbol{u}_{\epsilon}, \boldsymbol{u}_{\epsilon_{k}}) = 0.$$

Thus

$$\frac{1}{2}\frac{d}{dt}|u_{\epsilon}|^{2}+\nu|\nabla u_{\epsilon}|^{2}\leq \epsilon_{k}|(A_{1}u_{\epsilon_{k}},A_{1}u_{\epsilon})|+\epsilon_{l}|(A_{1}u_{\epsilon_{l}},A_{1}u_{\epsilon})|+|b(u_{\epsilon},u_{\epsilon},u_{\epsilon_{k}})|. \tag{21}$$

The trilinear term can be estimated using (11) as,

$$\begin{aligned} |b(u_{\epsilon}, u_{\epsilon}, u_{\epsilon_{h}})| &\leq c_{1} |u_{\epsilon}| |\nabla u_{\epsilon}| |\nabla u_{\epsilon_{h}}| \\ &\leq \frac{\nu}{2} |\nabla u_{\epsilon}|^{2} + \frac{c_{1}^{2}}{2\nu} |u_{\epsilon}|^{2} |\nabla u_{\epsilon_{h}}|^{2}. \end{aligned}$$

Substituting the above result into (21), we obtain

$$\frac{d}{dt}|u_{\epsilon}|^2 + \nu|\nabla u_{\epsilon}|^2 \leq 2\epsilon_k |A_1 u_{\epsilon_k}| |A_1 u_{\epsilon}| + 2\epsilon_l |A_1 u_{\epsilon_l}| |A_1 u_{\epsilon}| + \frac{c_1^2}{\nu}|u_{\epsilon}|^2 |\nabla u_{\epsilon_k}|^2.$$

We drop the positive term $\nu |\nabla u_{\epsilon}|^2$ and integrate this equation from 0 to t, and noting that $u_{\epsilon}(0) = 0$, we get

$$|\boldsymbol{u}_{\epsilon}(t)|^{2} \leq 2\epsilon_{k} \int_{0}^{t} |A_{1}\boldsymbol{u}_{\epsilon_{k}}| |A_{1}\boldsymbol{u}_{\epsilon}|d\tau + 2\epsilon_{l} \int_{0}^{t} |A_{1}\boldsymbol{u}_{\epsilon_{l}}| |A_{1}\boldsymbol{u}_{\epsilon}|d\tau + \frac{c_{1}^{2}}{\nu} \int_{0}^{t} |\boldsymbol{u}_{\epsilon}|^{2} |\nabla \boldsymbol{u}_{\epsilon_{k}}|^{2} d\tau.$$

$$(22)$$

From Lemma 3.2, we have $u_{\epsilon_k} \in L^2(0,T;D(A_1))$ with bound independent of ϵ_k . Hence by applying the Schwartz inequality we have

$$\epsilon_{k} \int_{0}^{t} |A_{1} \mathbf{u}_{\epsilon_{k}}| |A_{1} \mathbf{u}_{\epsilon}| d\tau \leq \epsilon_{k} \left(\int_{0}^{t} |A_{1} \mathbf{u}_{\epsilon_{k}}|^{2} d\tau \right)^{1/2} \left(\int_{0}^{t} |A_{1} \mathbf{u}_{\epsilon}|^{2} d\tau \right)^{1/2} \\
\leq \epsilon_{k} \left(3^{1/2} d_{4} \right).$$

Similarly we have

$$\epsilon_l \int_0^t |A_1 u_{\epsilon_l}| |A_1 u_{\epsilon}| d\tau \leq \epsilon_l (3^{1/2} d_4).$$

Since from Lemma 3.2 $u_{\epsilon_k} \in L^{\infty}(0,T;\hat{V})$ with bound independent of ϵ_k ,

$$\int_0^t |u_{\epsilon}|^2 |\nabla u_{\epsilon_k}|^2 d\tau \le d_3 \int_0^t |u_{\epsilon}|^2 d\tau.$$

Combining all of the above results into inequality (22) we get,

$$|u_{\epsilon}(t)|^2 \le 2 \cdot 3^{1/2} d_4(\epsilon_k + \epsilon_l) + \frac{c_1^2 d_3}{\nu} \int_0^t |u_{\epsilon}(\tau)|^2 d\tau.$$
 (23)

Notice that here c_1 , d_3 and d_4 are all independent of ϵ . Now, if we denote $y(t) = \int_0^t |u_{\epsilon}(\tau)|^2 d\tau$ then (23) becomes

$$\begin{cases} \frac{dy}{dt} \leq 2 \cdot 3^{1/2} d_4(\epsilon_k + \epsilon_l) + \frac{c_1^2 d_3}{\nu} y(t) \\ y(0) = 0. \end{cases}$$

From this we can deduce that,

$$y(t) \leq 3^{1/2} \nu \left(\epsilon_k + \epsilon_l\right) \frac{d_3}{d_4} \left[\exp\left(\frac{c_1^2 d_3}{\nu}t\right) - 1 \right], \quad t \in [0, T].$$

Hence,

$$\int_0^T |u_{\epsilon}(\tau)|^2 d\tau \longrightarrow 0, \quad \text{ as } \epsilon_k, \epsilon_l \to 0.$$

That is

$$\|\mathbf{u}_{\epsilon_k} - \mathbf{u}_{\epsilon_l}\|_{L^2(0,T;H)} \longrightarrow 0$$
, as $\epsilon_k, \epsilon_l \to 0$.

This means $\{u_{\epsilon_k}\}$ is a Cauchy sequence in $L^2(0,T;H)$ and there exists a limit u in $L^2(0,T;H)$ such that

$$\|\boldsymbol{u}_{\epsilon_k} - \boldsymbol{u}\|_{L^2(0,T;H)} \longrightarrow 0 \quad \text{as } \epsilon_k \to 0.$$

This completes the proof of the strong convergence result (iii) of (19).

Let us now establish the limit of the equation (12) as $\epsilon_k \to 0$. Let us take a test element ϕ such that

$$\phi \in C(0,T;V)$$
 and $\phi' \in L^2(0,T;H)$.

Taking the inner product with (12), we get

$$(u'_{\epsilon_k}, \phi) + \epsilon_k (Au_{\epsilon_k}, \phi) + \nu(A_1u_{\epsilon_k}, \phi) + b(u_{\epsilon_k}, u_{\epsilon_k}, \phi) = (f, \phi),$$

Integrating with respect to t and then integrating by parts we get,

$$(\boldsymbol{u}_{\epsilon_{k}}(T), \phi(T)) - (\boldsymbol{u}_{\epsilon_{k}}(0), \phi(0)) - \int_{0}^{T} (\boldsymbol{u}_{\epsilon_{k}}, \phi') dt$$

$$+ \epsilon_{k} \int_{0}^{T} (A_{1} \boldsymbol{u}_{\epsilon_{k}}, A_{1} \phi) dt + \nu \int_{0}^{T} (\nabla \boldsymbol{u}_{\epsilon_{k}}, \nabla \phi) dt$$

$$+ \int_{0}^{T} b(\boldsymbol{u}_{\epsilon_{k}}, \boldsymbol{u}_{\epsilon_{k}}, \phi) dt = \int_{0}^{T} (f, \phi) dt.$$
(24)

Let us choose $\psi = \phi \in \mathcal{D}(0,T;V)$. Using the convergence Proposition 2.1 we can take the equation (24) to the limit as $\epsilon_k \to 0$,

$$-\int_0^T (\boldsymbol{u}, \boldsymbol{\psi}') dt + \nu \int_0^T (\nabla \boldsymbol{u}, \nabla \boldsymbol{\psi}) dt + \int_0^T b(\boldsymbol{u}, \boldsymbol{u}, \boldsymbol{\psi}) dt = \int_0^T (\boldsymbol{f}, \boldsymbol{\psi}) dt.$$

Here the term

$$\epsilon_k \int_0^T (A_1 u_{\epsilon_k}, A_1 \psi) dt \longrightarrow 0,$$

as $\epsilon_k \to 0$ since

$$\int_0^T (A_1 u_{\epsilon_k}, A_1 \psi) dt \leq \text{const. independent of } \epsilon_k.$$

Since $u \in L^2(0,T;D(A_1)) \cap L^{\infty}(0,T;\hat{V})$, we can conclude that u is indeed the strong solution for the conventional Navier-Stokes equations.

From Lemma 3.1, we can deduce that the weak solutions $u_{\epsilon_k} \in L^2(0,T;\hat{V}) \cap L^{\infty}(0,T;H)$ are bounded independent of ϵ_k . Hence the convergence results (i) and (ii) are satisfied by

the weak solutions. However, such convergences are not sufficient to conclude the strong convergence in $L^2(0,T;H)$. Therefore, Theorem 4.1 is not valid for weak solutions. We can nevertheless establish a convergence theorem for the weak solutions provided they satisfy a certain bound. The following theorem is proved in [10, 9]:

Theorem 4.2 Let u_{ϵ} be the weak solution of problem (12) given by Theorem 2.1 with $f \in L^2(0,T;H)$. Moreover, $u_{\epsilon} \in L^{\infty}(0,T;L^{3+\delta}(\Omega))$ uniformly in ϵ ($\delta > 0$) and $\nu > c$, where c is a positive constant. Then, for $\epsilon \to 0$, u_{ϵ} approaches a unique limit u which is the weak solution of the Navier-Stokes equations.

5 Convergence of T-time Periodic Solution

In this section we will show that the T-time periodic solution of the regularized Navier-Stokes equations converges in the limit to a T-time periodic solution of Navier-Stokes equations. Existence theorems for T-time periodic solutions to the regularized Navier-Stokes equations were established in [10, 9]. For similar existence theorems for conventional Navier-Stokes equations see [12, 17, 14]. Let us first give a definition for the time periodic solution.

Definition 5.1 Let $f(t) \in L^2_{loc}(-\infty, +\infty; H)$ and be periodic with period T. Then $u_{\epsilon}(t)$ is said to be a T-time periodic solution of regularized Navier-Stokes equations if it satisfies $u_{\epsilon}(t) \in L^{\infty}(-\infty, +\infty; H) \cap L^2_{loc}(-\infty, +\infty; V)$, T-periodic in time and

$$\int_{-\infty}^{+\infty} \{-(\mathbf{u}_{\epsilon}(t), \mathbf{\psi}'(t)) + \epsilon(\Delta \mathbf{u}_{\epsilon}(t), \Delta \mathbf{\psi}(t)) + \nu(\nabla \mathbf{u}_{\epsilon}(t), \nabla \mathbf{\psi}(t)) + b(\mathbf{u}_{\epsilon}(t), \mathbf{u}_{\epsilon}(t), \mathbf{\psi}(t))\}dt = \int_{-\infty}^{+\infty} (f(t), \mathbf{\psi}(t))dt, \quad \forall \mathbf{\psi} \in \mathcal{Y}$$

$$with \quad \mathcal{Y} = \{\mathbf{\psi} \in C_0(-\infty, +\infty; V) \text{ and } \mathbf{\psi}' \in L^2(-\infty, +\infty; H)\}.$$
(25)

Here $C_0(-\infty, +\infty; V)$ denotes the set of continuous V-valued functions that vanish outside a compact time interval.

In [10, 9], it has been proven that a necessary and sufficient condition for a T-periodic solution to be a weak solution in $(-\infty, +\infty)$ is that it must be a weak solution in the interval [0,T]. The regularity of periodic solutions can be obtained by noting that $\exists t_1 \in (-\infty, +\infty)$ such that $u_{\epsilon}(x, t_1) \in V$. We use this as the initial value and study the regularity in $[t_1, \infty)$ by standard methods [15]. Repeating this in each interval we deduce the regularity of the periodic solution in the entire interval $(-\infty, +\infty)$ as $u_{\epsilon}(t) \in L^{\infty}(-\infty, +\infty; V) \cap L^2_{loc}(-\infty, +\infty; D(A))$. Let us now state the main theorem:

Theorem 5.1 Let $f(t) \in L^2_{loc}(-\infty, +\infty; H)$ be given and $u_{\epsilon}(t) \in L^{\infty}(-\infty, +\infty; V) \cap L^2_{loc}(-\infty, +\infty; D(A))$ be the T-time periodic solution of the regularized Navier-Stokes equations. Then as $\epsilon \to 0$, $u_{\epsilon}(t)$ converges to a limit $u \in L^{\infty}(-\infty, +\infty; \hat{V}) \cap L^2_{loc}(-\infty, +\infty; D(A_1))$ which is a T-time periodic solution of the Navier-Stokes equations

Proof: Since $u_{\epsilon}(t)$ is a T-periodic solution which satisfies (25), for any $k \in \mathbb{Z}$ we can choose a test function $\psi(t) = \psi_0(t)$ so that it vanishes outside the compact interval (kT, (k+1)T). Thus,

$$\int_{kT}^{(k+1)T} \{-(\mathbf{u}_{\epsilon}(t), \psi_{0}'(t)) + \epsilon (\Delta \mathbf{u}_{\epsilon}(t), \Delta \psi_{0}(t)) + \nu (\nabla \mathbf{u}_{\epsilon}(t), \nabla \psi_{0}(t)) + b(\mathbf{u}_{\epsilon}(t), \mathbf{u}_{\epsilon}(t), \psi_{0}(t))\}dt = \int_{kT}^{(k+1)T} (f(t), \psi_{0}(t))dt, \quad \forall k \in \mathbb{Z},$$

with $u_{\epsilon}(t) \in L^{\infty}(kT,(k+1)T;V) \cap L^{2}(kT,(k+1)T;D(A))$. In particular if we let k=0, we obtain the strong solution in the sub-interval (0,T).

Let $\{u_{\epsilon_k}\}$ be a sequence of such solutions with $\epsilon_k = 1/k$. Then,

$$\int_0^T \{-(\boldsymbol{u}_{\boldsymbol{\epsilon_k}}(t), \boldsymbol{\psi}_0'(t)) + \boldsymbol{\epsilon_k} (\Delta \boldsymbol{u}_{\boldsymbol{\epsilon_k}}(t), \Delta \boldsymbol{\psi}_0(t)) + \nu(\nabla \boldsymbol{u}_{\boldsymbol{\epsilon_k}}(t), \nabla \boldsymbol{\psi}_0(t)) + b(\boldsymbol{u}_{\boldsymbol{\epsilon_k}}(t), \boldsymbol{u}_{\boldsymbol{\epsilon_k}}(t), \boldsymbol{\psi}_0(t))\} dt = \int_0^T (\boldsymbol{f}(t), \boldsymbol{\psi}_0(t)) dt,$$

$$\forall \quad \boldsymbol{\psi}_0 \in C(0, T; V) \quad \boldsymbol{\psi}_0' \in L^2(0, T; H).$$

From Lemma 3.2, we have the strong solution $u_{\epsilon_k} \in L^2(0, T; D(A_1)) \cap L^{\infty}(0, T; \hat{V})$ with bounds uniform in ϵ_k . Thus, by applying the convergence Proposition 2.1 we obtain

$$\int_0^T \{-(\boldsymbol{u}(t),\boldsymbol{\psi}_0'(t)) + \nu(\nabla \boldsymbol{u}(t),\nabla \boldsymbol{\psi}_0(t))$$

$$+b(oldsymbol{u}(t),oldsymbol{u}(t),oldsymbol{\psi}_0(t))\}dt = \int_0^T (oldsymbol{f}(t),oldsymbol{\psi}_0(t))dt,$$
 $\forall \quad oldsymbol{\psi}_0 \in C(0,T;V) \,\,oldsymbol{\psi}_0' \in L^2(0,T;H).$

Here

$$\epsilon_{k} \int_{0}^{T} (\Delta u_{\epsilon_{k}}, \Delta \psi_{0}) dt \longrightarrow 0$$

as $\epsilon_k \to 0$.

Now, by periodicity of the strong solution we get

$$\int_{kT}^{(k+1)T} \{-(\boldsymbol{u}(t), \boldsymbol{\psi}_{k}'(t)) + \nu(\nabla \boldsymbol{u}(t), \nabla \boldsymbol{\psi}_{k}(t)) + b(\boldsymbol{u}(t), \boldsymbol{u}(t), \boldsymbol{\psi}_{k}(t))\} dt = \int_{kT}^{(k+1)T} (f(t), \boldsymbol{\psi}_{k}(t)) dt, \tag{26}$$

for each sub-interval (kT,(k+1)T). Here we denote $\psi_k(t) = \psi_0(t-kT)$.

The above result implies that $u(t) \in L^{\infty}(kT, (k+1)T; \hat{V}) \cap L^{2}(kT, (k+1)T; D(A_{1}))$ is a strong solution in each sub-interval. Hence, by choosing a suitable $\psi(t)$ and summing over k, we get (25) with $\epsilon = 0$. This completes the proof.

6 Upper Semicontinuity of Attractors

In this section we will show that the compact global attractor Λ_{ϵ} associated with the semigroup $W_{\epsilon}(t,\cdot)$ converges to the compact global attractor Λ associated with the conventional Navier-Stokes system. We prove this result by establishing the upper semicontinuity of Λ_{ϵ} at $\epsilon=0$. In this section $f\in H$ and is independent of time.

We begin by showing that $W_{\epsilon}(t,\cdot)$ admits a compact attractor Λ_{ϵ} in H for each $\epsilon \geq 0$. According to Ladyzhenskaya [6], the formal definition of a global attractor is as follows: A set $\Lambda_{\epsilon} \subset H$ is called the **global attractor** for the semigroup $W_{\epsilon}(t,\cdot)$ if

- (i) Λ_{ϵ} is bounded in H;
- (ii) Λ_{ϵ} is an invariant set, $W_{\epsilon}(t,0;\Lambda_{\epsilon})=\Lambda_{\epsilon}, \quad \forall \ t \in \mathbf{R};$
- (iii) Λ_{ϵ} is a compact set that attracts the bounded sets of H.

For a study on the global attractor to the Navier-Stokes equations the reader is referred to Constantin, Foias and Temam [3] and Temam [16].

It follows from Corollary 3.1 that for $f \in H$ we have

$$|u_{\epsilon}(t)|^2 \le |u_{\epsilon}(0)|^2 e^{-\alpha t} + \rho_0^2 [1 - e^{-\alpha t}], \quad t > 0,$$
 (27)

where $\alpha = \nu \mu_1$ and $\rho_0 = |f|/\alpha$. Note that both α and ρ_0 are independent of ϵ . Hence, for any ball $B_{R_0} = \{u_{\epsilon}(0) \in H; |u_{\epsilon}(0)| \leq R_0\}$, there is a ball B_{r_0} in H centered at origin with radius $r_0 > \rho_0$ $(R_0 > r_0)$ such that

$$W_{m{\epsilon}}(t,0;B_{R_0}) \subset B_{m{r}_0}, \quad ext{ for } t \geq t_0(B_{R_0}) = rac{1}{lpha} \ln rac{R_0^2 -
ho_0^2}{r_0^2 -
ho_0^2}.$$

The ball B_{r_0} is said to be exponentially absorbing and invariant under the action of the map $W_{\epsilon}(t,0;\cdot)$.

Recalling the inequality (14), we have

$$\frac{d}{dt}|\boldsymbol{u}_{\epsilon}|^{2} + 2\epsilon \|\boldsymbol{u}_{\epsilon}\|^{2} + \nu |\nabla \boldsymbol{u}_{\epsilon}|^{2} \leq \frac{|f|^{2}}{\alpha}.$$
 (28)

Integrating from t to t+1, we obtain for $u_0 \in B_{R_0}$

$$\int_{t}^{t+1} |\nabla u_{\epsilon}|^{2} d\tau \leq \frac{1}{\nu} \left(r_{0}^{2} + \frac{|f|^{2}}{\alpha} \right), \quad \forall t \geq t_{0}(B_{R_{0}}).$$
 (29)

Now, we recall the inequality (17),

$$\frac{d}{d\tau}|\nabla u_{\epsilon}|^{2}+\nu\mu_{1}|\nabla u_{\epsilon}|^{2}\leq\frac{|f|^{2}}{\nu}.$$

We drop the positive terms $\nu \mu_1 |\nabla u_{\epsilon}|^2$ and integrate with respect to τ from s to t+1 to obtain

$$|\nabla u_{\epsilon}(t+1)|^2 \leq |\nabla u_{\epsilon}(s)|^2 + \frac{|f|^2}{\nu}(t+1-s).$$

We then integrate the above inequality with respect to s from t to t+1 to get

$$|\nabla u_{\epsilon}(t+1)|^2 \leq \int_t^{t+1} |\nabla u_{\epsilon}(s)|^2 ds + \frac{|f|^2}{2\nu}.$$

It follows from (29) that

$$|\nabla u_{\epsilon}(t)|^2 \leq \frac{1}{\nu} \left(r_0^2 + \frac{|f|^2}{\alpha} + \frac{|f|^2}{2} \right) = R_1^2, \quad \forall \ t \geq t_0(B_{R_0}) + 1.$$

This means for $u_{\epsilon 0} \in B_{R_0}$ and any $\tau \geq t_0(B_{R_0}) + 1$, we have $u_{\epsilon}(\tau) \in B_{R_1} = \{u_{\epsilon}(\tau) \in \hat{V}; |\nabla u_{\epsilon}(\tau)| \leq R_1\}$. That is,

$$W_{\epsilon}(\tau, 0; B_{R_0}) \subset B_{R_1}, \quad \text{for } \tau \ge t_0(B_{R_0}) + 1.$$
 (30)

From Corollary 3.2, it is easy to show

$$|\nabla u_{\epsilon}(t)|^2 \leq |\nabla u_{\epsilon}(\tau)|^2 e^{-\alpha(t-\tau)} + \rho_1^2 \left(1 - e^{-\alpha(t-\tau)}\right), \quad \forall t > \tau \geq t_0(B_{R_0}) + 1,$$

where $\alpha = \nu \mu_1$ and $\rho_1^2 = |f|^2/\nu \alpha$. Again, both α and ρ_1 are independent of ϵ . Hence, for any ball B_{R_1} , there exists a ball B_{r_1} in \hat{V} centered at origin with radius $r_1 > \rho_1$ $(R_1 > r_1)$ such that

$$W_{\epsilon}(t,\tau;B_{R_1}) \subset B_{r_1}, \quad \text{for } t \ge t_1(B_{R_0}) = t_0(B_{R_0}) + 1 + \frac{1}{\alpha} \ln \frac{R_1^2 - \rho_1^2}{r_1^2 - \rho_1^2}.$$
 (31)

The ball B_{r_1} is said to be exponentially absorbing and invariant under the action of the map $W_{\epsilon}(t,\tau;\cdot)$. Combining results in (30) and (31) and applying the semigroup property gives us

$$W_{\epsilon}(t,0;B_{R_0}) = W_{\epsilon}(t,\tau;W_{\epsilon}(\tau,0;B_{R_0})), \quad \tau \ge t_0(B_{R_0}) + 1$$

= $W_{\epsilon}(t,\tau;B_{R_1}) \subset B_{\tau_1}, \quad \forall t \ge t_1(B_{R_0}).$

That is, ball B_{r_1} of radius r_1 in \hat{V} will absorb any bounded set B_{R_0} in H. Since the embedding of \hat{V} in H is compact, we deduce that $W_{\epsilon}(t,0;\cdot)$ maps a bounded set in H into a compact set in H. In addition, the operators $W_{\epsilon}(t,0;\cdot)$ are uniformly compact for $t \geq t_1(B_{R_0})$. That is,

$$\bigcup_{t\geq t_1} W_{\epsilon}(t,0;B_{R_0})$$

is relatively compact in H. Due to a theorem from Temam [16, Theorem 1.1], there exists a compact attractor Λ_{ϵ} which attracts every bounded sets in H. Λ_{ϵ} is the global attractor for

operators $W_{\epsilon}(t,0;\cdot)$ and it is also the ω -limit set of the absorbing set B_{r_1} (i.e. $\Lambda_{\epsilon} = \omega(B_{r_1})$). This means if we denote $W_{\epsilon}(t,0;B_{r_1}) = B_{r_1}(t)$ then

$$\Lambda_{\epsilon} = \bigcap_{ au \geq 0} \, cl \left(igcup_{t \geq au} B_{r_1}(t)
ight).$$

Note that the global attractor Λ_{ϵ} must be contained in the absorbing balls in H and \hat{V} :

$$\Lambda_{\epsilon} \subseteq B_{r_0} \cap B_{r_1}$$
.

Notice that all the above bounds are independent of ϵ . In particular, for $\epsilon=0$, we obtain existence of the compact attractor Λ for the conventional Navier-Stokes equations. We now prove the following theorem:

Theorem 6.1 For $\epsilon \geq 0$, W_{ϵ} admits a compact attractor Λ_{ϵ} which attracts bounded sets of H and is contained in the absorbing balls $B_{r_0} \cap B_{r_1}$, where r_0 and r_1 are independent of ϵ . Moreover, $d_H(\Lambda_{\epsilon}, \Lambda) \to 0$ as $\epsilon \to 0$.

Proof: We need the following result [4, Lemma 2.1]:

Let X be a Banach space and T(t), $t \geq 0$, a semigroup on X. Let $T_h(t)$ be an approximate semigroup (depending on a parameter h > 0) to the semigroup T(t). For $\delta > 0$, let $\mathcal{N}(\mathcal{B}, \delta)$ denote the δ -neighborhood of a bounded set $\mathcal{B} \in X$ which is the union of open balls of radius δ centered on \mathcal{B} .

Proposition 6.1 Let $\mathcal{B} \in X$ be a bounded set and $\mathcal{U}_0, \mathcal{U}_1$ be two open sets such that $\mathcal{N}(\mathcal{B}, d_0) \subset \mathcal{U}_0$, $\mathcal{N}(\mathcal{B}, d_1) \subset \mathcal{U}_1$ for some $d_0, d_1 > 0$. If

- (i) \mathcal{B} attracts \mathcal{U}_0 under T(t) and
- (ii) $T_h(t)$ approximates T(t) on U_1 uniformly on compact sets of $[t_0, \infty)$, with $t_0 \ge 0$, then for any $\delta > 0$, there are $h_0 > 0$ and $\tau_0 > t_0$ such that, for $0 < h < h_0$, for $t \ge \tau_0$,

$$T_h(t) (\mathcal{U}_0 \cap \mathcal{U}_1) \subset \mathcal{N}(\mathcal{B}, \delta).$$

We will now prove the semicontinuity property for the global attractor Λ_{ϵ} . This can be proven by showing the hypotheses of above proposition are satisfied by $W(t,0;\cdot)$ and $W_{\epsilon}(t,0;\cdot)$ for ϵ small enough. Clearly, it is sufficient to show that the δ -neighborhood of attractor Λ is an absorbing set and that $W_{\epsilon}(t,0;\cdot)$ approximates $W(t,0;\cdot)$ on $B_{R_2} = \{u_{\epsilon}(0) \in \hat{V}; |\nabla u_{\epsilon}(0)| \leq R_2\}$ uniformly on compact sets of $[0,\infty)$. Let us prove this in two steps:

First step:

Let $\mathcal{N}(\Lambda, \delta)$ be the δ -neighborhood of the attractor Λ . Since Λ is a global attractor, for any bounded set $B_{R_0} = \{ u(0) \in H; |u(0)| \leq R_0 \} \subset H$

$$d_H(W(t,0;B_{R_0}),\Lambda)\longrightarrow 0$$
 as $t\to\infty$.

Here $d_H(A, B)$ is the semidistance of two subsets A, B of H:

$$d_H(A,B) = \sup_{x \in A} \inf_{y \in B} d(x,y).$$

Thus, there exists $\delta > 0$ and $t \geq t_{\delta}$ such that

$$d_H(W(t,0;B_{R_0}),\Lambda) \leq rac{\delta}{2}, \quad ext{ for } t \geq t_{\delta}.$$

This implies

$$W(t,0;B_{R_0})\subset \mathcal{N}(\Lambda,\delta), \quad \text{for } t\geq t_\delta.$$

This shows that $\mathcal{N}(\Lambda, \delta)$ is an absorbing set.

Second step:

We want to show $W_{\epsilon}(t,0;\cdot)$ approximates $W(t,0;\cdot)$ on B_{R_2} uniformly on compact sets of $[0,\infty)$. By subtracting (13) from (12), we obtain for $w = u_{\epsilon} - u$

$$\mathbf{w}' + \epsilon A \mathbf{u}_{\epsilon} + \nu A_1 \mathbf{w} + B(\mathbf{u}_{\epsilon}, \mathbf{u}_{\epsilon}) - \hat{B}(\mathbf{u}, \mathbf{u}) = 0.$$

Taking the inner product with w, we get

$$\frac{1}{2}\frac{d}{dt}|\mathbf{w}|^2 + \epsilon(A\mathbf{u}_{\epsilon}, \mathbf{w}) + \nu|\nabla \mathbf{w}|^2 = b(\mathbf{w}, \mathbf{w}, \mathbf{u}_{\epsilon}). \tag{32}$$

Since $D(A^{1/2}) = V = D(A_1)$, the second term of left hand side of equation (32) can be written as

$$\epsilon(A\mathbf{u}_{\epsilon}, \mathbf{w}) = \epsilon(A\mathbf{u}_{\epsilon}, \mathbf{u}_{\epsilon}) - \epsilon(A\mathbf{u}_{\epsilon}, \mathbf{u})
= \epsilon |A^{1/2}\mathbf{u}_{\epsilon}|^{2} - \epsilon(A^{1/2}\mathbf{u}_{\epsilon}, A^{1/2}\mathbf{u})
= \epsilon |A^{1/2}\mathbf{u}_{\epsilon}|^{2} - \epsilon(A^{1/2}\mathbf{u}_{\epsilon}, A_{1}\mathbf{u}).$$

This leads to

$$\frac{1}{2}\frac{d}{dt}|\mathbf{w}|^2 + \epsilon |A^{1/2}\mathbf{u}_{\epsilon}|^2 + \nu |\nabla \mathbf{w}|^2 = \epsilon (A^{1/2}\mathbf{u}_{\epsilon}, A_1\mathbf{u}) + b(\mathbf{w}, \mathbf{w}, \mathbf{u}_{\epsilon}).$$

By applying Young's inequality, we have

$$\epsilon (A^{1/2} \boldsymbol{u}_{\epsilon}, A_{1} \boldsymbol{u}) \leq \epsilon |A^{1/2} \boldsymbol{u}_{\epsilon}| |A_{1} \boldsymbol{u}|
\leq \frac{\epsilon}{2} |A^{1/2} \boldsymbol{u}_{\epsilon}|^{2} + \frac{\epsilon}{2} |A_{1} \boldsymbol{u}|^{2}.$$

The trilinear term can be estimated as

$$|b(\boldsymbol{w}, \boldsymbol{w}, \boldsymbol{u}_{\epsilon})| \leq c_{1}|\boldsymbol{w}|^{1/2}|\nabla \boldsymbol{w}|^{1/2}|\boldsymbol{w}|^{1/2}|\nabla \boldsymbol{w}|^{1/2}|\nabla \boldsymbol{u}_{\epsilon}|$$

$$\leq c_{1}|\boldsymbol{w}||\nabla \boldsymbol{w}||\nabla \boldsymbol{u}_{\epsilon}|$$

$$\leq \frac{\nu}{2}|\nabla \boldsymbol{w}|^{2} + \frac{c_{1}^{2}}{2\nu}|\boldsymbol{w}|^{2}|\nabla \boldsymbol{u}_{\epsilon}|^{2}.$$

By combining all of the above estimates in (32), we get

$$\frac{d}{dt}|w|^2 + \epsilon |A^{1/2}u_{\epsilon}|^2 + \nu |\nabla w|^2 \le \epsilon |A_1u|^2 + \frac{c_1^2}{\nu}|w|^2 |\nabla w|^2.$$

We can drop the positive terms $\epsilon |A^{1/2}u_{\epsilon}|^2$ and $\nu |\nabla w|^2$ to obtain the following differential inequality

$$\frac{d}{dt}|\mathbf{w}|^2 \le \epsilon |A_1\mathbf{u}|^2 + \frac{c_1^2}{\nu}|\mathbf{w}|^2|\nabla \mathbf{u}_{\epsilon}|^2. \tag{33}$$

Using Corollary 3.2 we get,

$$|\nabla u_{\epsilon}(t)|^2 \le |\nabla u_{\epsilon}(0)|^2 e^{-\alpha t} + \rho_1^2 (1 - e^{-\alpha t}).$$

This implies that any ball $B_{R_2} = \{ u_{\epsilon}(0) \in \hat{V}; |\nabla u_{\epsilon}(0)| \leq R_2 \}$ in \hat{V} with radius $R_2 > \rho_1$ will satisfy

$$W_{\epsilon}(t,0;B_{R_2})\subset B_{R_2}, \quad \text{for } t\geq 0.$$

This means if $u_{\epsilon}(0) \in B_{R_2}$, then $W_{\epsilon}(t,0;u_{\epsilon}(0))$ is defined and belongs to B_{R_2} for $t \geq 0$. The ball B_{R_2} is therefore invariant under the map $W_{\epsilon}(t,0;\cdot)$. That is, we have

$$|\nabla u_{\epsilon}(t)| \le R_2, \quad t \ge 0, \quad \text{for } u_{\epsilon}(0) \in B_{R_2}.$$
 (34)

Let $u_{\epsilon}(0) \in B_{R_2}$ then it follows from (33) that

$$\frac{d}{dt}|w|^2 \le \epsilon |A_1 u|^2 + \frac{c_1^2 R_2^2}{\nu} |w|^2, \quad t \ge 0.$$
 (35)

From the standard Gronwall Lemma, (35) gives

$$|w(t)|^{2} \leq |w(0)|^{2} \exp\left(\int_{0}^{t} \frac{c_{1}^{2} R_{2}^{2}}{\nu} d\tau\right)$$

$$+\epsilon \int_{0}^{t} |A_{1}u(s)|^{2} \exp\left(\int_{s}^{t} \frac{c_{1}^{2} R_{2}^{2}}{\nu} d\tau\right) ds$$

$$= \epsilon \int_{0}^{t} |A_{1}u(s)|^{2} \exp\left[\frac{c_{1}^{2} R_{2}^{2}(t-s)}{\nu}\right] ds,$$

where $\mathbf{w}(0) = \mathbf{u}_{\epsilon}(0) - \mathbf{u}(0) = 0$.

Let us now consider $t \in [0,T]$ such that $0 \le s \le t \le T$. This gives

$$|w(t)|^2 \leq \epsilon \exp\left(\frac{c_1^2 R_2^2}{\nu}T\right) \int_0^t |A_1 u(s)|^2 ds.$$

By applying (ii) of Corollary 3.2 (with $\epsilon = 0$), we obtain

$$|\boldsymbol{w}(t)|^2 \leq \frac{\epsilon}{\nu} \exp\left(\frac{c_1^2 R_2^2}{\nu}T\right) \left(R_2^2 + \frac{|\boldsymbol{f}|^2 T}{\nu}\right), \quad t \in [0, T].$$

This means for $u_{\epsilon}(0) \in B_{R_2}$, then

$$|W_{\epsilon}(t,0;u_{\epsilon}(0)) - W(t,0;u_{\epsilon}(0))|_{H}^{2} \leq g(\epsilon,\nu,R_{2},f,T),$$

with

$$g(\epsilon, \nu, R_2, f, T) = \epsilon \left(\frac{R_2^2}{\nu} + \frac{|f|^2 T}{\nu^2}\right) \exp\left(\frac{c_1^2 R_2^2}{\nu} T\right)$$

and

$$\lim_{\epsilon \to 0} g(\epsilon, \nu, R_2, f, T) = 0.$$

Hence $W_{\epsilon}(t)$ approximates W(t) on B_{R_2} uniformly on [0, T]. According to the Proposition 6.1, then for any $\delta > 0$, there are $\epsilon_0 > 0$ and $\tau_0 > 0$ such that

$$W_{\epsilon}(t)(B_{R_0}\cap B_{R_2})\subset \mathcal{N}(\Lambda,\delta), \quad \text{ for } 0<\epsilon<\epsilon_0,\ t\geq au_0.$$

Since the attractor Λ_{ϵ} is contained in $B_{R_0} \cap B_{R_2}$, we have

$$W_{\epsilon}(t)(\Lambda_{\epsilon}) \subset \mathcal{N}(\Lambda, \delta), \quad \text{ for } 0 < \epsilon < \epsilon_0, \ t \geq \tau_0.$$

Since Λ_{ε} is an invariant set, we deduce that

$$\Lambda_{\epsilon} \subset \mathcal{N}(\Lambda, \delta), \quad \text{ for } 0 < \epsilon < \epsilon_0, \ t \geq \tau_0.$$

Since δ is arbitrary, we obtain the upper semicontinuity of Λ_{ϵ} at $\epsilon=0$:

$$d_H(\Lambda_\epsilon,\Lambda)\longrightarrow 0,\quad ext{ as }\epsilon o 0.$$

References

- [1] R. A. Adams. Sobolev Spaces. Academic Press, New York, 1975.
- [2] V. Barbu and C. Da Prato. Hamilton-Jacobi Equations in Hilbert Spaces, volume 86 of Research Notes in Mathematics. Pitman, 1983.
- [3] P. Constantin, C. Foias, and R. Temam. Attractor Representing Turbulent Flows, volume 53, No. 314 of Memoirs. Amer. Math. Soc., 1985.
- [4] Jack K. Hale, Xiao-Biao Lin, and Geneviéve Raugel. Upper semicontinuity of attractors for approximations of semigroups and partial differential equations. *Mathematics of Computation*, 50(181):89-123, 1988.
- [5] A. A. Kiselev and O. A. Ladyzhenskaya. On the existence and uniqueness of the solution of the nonstationary problem for a viscous incompressible fluid. *Izv. Akad. Nauk. SSSR*, Ser. Mat., 21:655-680, 1957.
- [6] O. A. Ladyzhenskaya. A dynamical system generated by the Navier-Stokes equations. J. Soviet Math., 3(3):458-479, 1975.
- [7] J. L. Lions. Espaces d'interpolation et domaines de pussances fractionnaires d'operateurs. J. Math. Soc. Japan, 14(2):233-241, 1962.
- [8] J. L. Lions and G. Prodi. Un théorème d'existence et d'unicité dans les équations de Navier-Stokes en dimension 2. C. R. Acad. Sci. Paris, 248:3519-3521, 1959.
- [9] Y. R. Ou. Analysis of Regularized Navier-Stokes Equations. PhD thesis, University of Southern California, Los Angeles, October 1988.
- [10] Y. R. Ou and S. S. Sritharan. Analysis of regularized Navier-Stokes equations-I. submitted to Pacific J. of Math.

- [11] Y. R. Ou and S. S. Sritharan. Analysis of regularized Navier-Stokes equations -II.
 ICASE Rreport 89-14, Institute for Computer Application in Science and Engineering,
 February 1989.
- [12] G. Prodi. Qualche risultato riguardo alle equazioni di Navier-Stokes nel caso bidimensionale. Rend. Sem. Mat. Padova, 30:1-15, 1960.
- [13] S. S. Sritharan. Invariant manifold theorems for the Navier-Stokes equations. In Proceedings of the Oberwolfach workshop on Navier-Stokes equations. Springer-Verlag, Sept. 18-24, 1988.
- [14] S. S. Sritharan. The Invariant Manifold Theory for Hydrodynamic Transition. Research Notes in Mathematics. Pitman, 1989. to appear.
- [15] R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1983.
- [16] Roger Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York, 1988.
- [17] V. I. Yudovich. Periodic solutions of viscous incompressible fluids. *Dokl. Akad. Nauk.*, 130:1214-1217, 1960.

			_
-			
-			
-			

NASA Natroal Agreed Leg and	Report Docum	entation Pag	e	
Space Administration				
1. Report No. NASA CR-181976	2. Government Accessi	on No.	3. Recipient's Cata	log No.
ICASE Report No. 90-2				
4. Title and Subtitle			5. Report Date	
			January 1	990
UPPER SEMICONTINUOUS G FLOW	OR VISCOUS	6. Performing Organization Code		
7. Author(s)			8. Performing Orga	nization Report No.
Yuh-Roung Ou			90-2	madion rioponi rio:
S. S. Sritharan			70-2	
			10. Work Unit No.	
Performing Organization Name and A	44		505-90-21-	-01
Institute for Computer	doress Applications in S	cience	11. Contract or Gran	ut No
and Engineering			11. Contract of Gran	it NO.
Mail Stop 132C, NASA L	angley Research Ce	nter	NAS1-1860	5
Hampton, VA 23665-5225			13. Type of Report a	and Period Covered
12. Sponsoring Agency Name and Addre National Aeronautics a		ation	Contractor	Report
Langley Research Cente		201011	14. Sponsoring Ager	nov Codo
Hampton, VA 23665-5225			14. Sponsoning Agei	icy code
15. Supplementary Notes				
Langley Technical Moni Richard W. Barnwell	tor:		omitted to Quar of Applied Math	•
Final Report			• •	
16. Abstract				
A particular form studied. It has been so bal attractor for the the conventional Navier	regularized system	regularization	goes to zero,	the glo-
17. Key Words (Suggested by Author(s))		18. Distribution State	ment	
Global attractor, Navie	34 - Fluid Mechanics and Heat Transfer			
equations	67 - Theor	etical Mathema	tics	
19. Security Classif. (of this report)	20. Security Classif. (of the	Unclassifi	ed - Unlimited	
Unclassified	Unclassified		21. No. of pages 28	22. Price A0 3
NASA FORM 1626 OCT 86				